For more than 130 years, the crankshaft has been utilized in internal combustion engines to transfer the reciprocating linear motion of the pistons to rotary motion so it’s available for propulsion, pumping and power production.
The function of the crankshaft design represents a major shortcoming in the transfer of motion, due to the limitations of its inherent geometry, creating numerous inefficiencies and negative impacts in the overall design of the engine.
The CV (Constant Velocity) engine design replaces the crankshaft with a Powershaft & Rodrack Assembly. The CV engine design produces as much as 58% more torque than a crankshaft-based engine producing equal power, while cutting fuel consumption by more than half and slashing exhaust emissions by more than 70%.
The Constant Velocity Motion Technology is the solution to nearly all of the inherent design and functional limitations created by the geometric inefficiencies of crankshaft-based engines, pumps, compressors, air motors, hydro-generators and other applications, both existing and yet to be invented.
The crankshaft mechanism has served a vital role in internal combustion engine design for more than 130 years. However, despite continuous refinement and incremental improvements over time, the crankshaft has reached the end of its useful life.
Crankshaft geometry has inherent design limitations in the transfer of linear force to rotational power. A crankshaft-based engine achieves its peak torque for only one brief moment at close to mid-stroke.
The CVE design achieves its maximum torque starting at 8%* of the stroke after TDC and maintains maximum torque for over 90%* of the stroke after TDC.
Side-by-side static testing of equal displacement crankshaft based versus CVE Technology based designs show that the CVE design boasts a 58%* improvement in torque over today’s crankshaft engine design.
The patented CV Engine/Technology (CVE) replaces the crankshaft completely with a Powershaft and Rodrack Assembly, which fundamentally alters the geometric relationship of the motion of the piston stroke relative to the movement of the rotating shaft. It continuously converts linear reciprocating piston motion to rotary movement and vice versa in the most efficient manner possible.
When comparing engine designs producing equal power:
The fuel required by the crankshaft-based engine is far greater because:
The fuel required by the CV Engine design is far less because:
When comparing engine designs producing equal power:
Crankshaft Engine Design
CV Motion Technology Engine Design
To illustrate the significant reductions in physical size that can be achieved via the CVE design, a direct comparison with a comparable crankshaft-based engine follows.
When comparing engine designs producing equal power:
Specifications | Crankshaft Engine Design Subaru FB25 (4cyl, 4 stroke) |
CV Motion Technology Engine Design A02 Version (4cyl, 4 stroke) |
---|---|---|
Horsepower | 170 | 193 |
Displacement | 152.4 cu or 2498 cc | 27 cu or 443 cc |
RPM | 5800 (non direct) | 2450 (direct, not geared) |
Height | 23.63" | 10" |
Width | 32.67" | 14.5" |
Length | 16.93" | 11.8" |
The CV Engine design eliminates the crankshaft, the second heaviest component of an internal combustion engine after the engine block.
The CV Engine produces the same power from a much smaller displacement and therefore is lighter overall. The CV Engine also requires fewer total parts in its construction and these parts are generally smaller and lighter as well.
The high compression pressures required in the crankshaft-based design impacts many aspects of the overall engine design, as multiple components must be made robust enough to withstand the very high pressures, which translates to significantly increased engine weight. The CVE design operates at substantially reduced pressures (gas or diesel) which allows for the weight of both the engine and the related subassemblies it would be installed in to be much lighter.
The combined effect of the elimination of the crankshaft, the physically smaller components comprising the engine and the ability to assemble the engine with components of an overall lighter weight construction translates to significant weight savings, on the order of hundreds of pounds even in a modest car size engine.
When comparing engine designs producing equal power:
Specifications | Crankshaft Engine Design Subaru FB25 (4cyl, 4 stroke) |
CV Motion Technology Engine Design A02 Version (4cyl, 4 stroke) |
---|---|---|
Horsepower | 170 | 193 |
Displacement | 152.4 cu or 2498 cc | 27 cu or 443 cc |
RPM | 5800 (non direct) | 2450 (direct, not geared) |
Dry Weight | 269 lbs | 71 lbs |
The CVE design allows for an extensive range of configurations, several of which are impossible or impractical with a crankshaft-based design. The design of the CVE powershaft allows for unique and highly beneficial designs which creates substantial manufacturing efficiencies, with resultant cost and operational savings.
The tables below highlight some of the applications, configurations and manufacturing benefits.
Configuration | Benefit |
---|---|
Multi-fuel | Gas, diesel, jet fuel, natural gas, hydrogen, compressed air |
Multi-module engine | Combine fueled engine, compressor, air motor (drone) |
Multi-module engine | Combine fueled engine, compressor, air motor (hyper-mileage vehicle) |
Multiple engines | Common, hollow powershaft allows for multiple, redundant engines |
Multiple engines | Coupled engines brought on/off line (more power vs. fuel savings) |
General aviation | Redundant engines; lightweight diesel application, diesel fuel vs. avgas |
Automobile | Compact, mid-engine designs without sacrificing interior space |
Range extender (battery) | Small engine recharges batteries for electric motor without stopping |
Range extender (no battery) | Small engine powers DC generator to directly power electric motors |
Recreational vehicles | Reduced emissions create acceptance in environmentally sensitive areas |
Generators / Heavy equipment | Greatly reduced fuel use creates less downtime & cost savings |
Ocean freight / Cruise Ships | Multiple engines coupled for high speed, “green” ocean crossings |
Ocean freight / Cruise Ships | Uncouple all but one engine for low emission in-harbor operation |
Ocean freight / Cruise Ships | Massive fuel savings from propulsion engines and ship’s electric generators |
Trucking industry | Massive fuel savings for fleet operators |
Trucking industry | Fuel savings mean the difference between profit & loss for owner/operators |
Marine industry | Same power from smaller engine creates more useable space |
Marine industry | Same power with less weight improves performance and saves fuel |
Scalable size | Same horsepower produced with smaller displacement |
Scalable output | Same displacement generating greater horsepower |
Manufacturing | Benefit |
---|---|
Common platform | Many engine variants (4, 6, 8 cylinders) from two CV engine configurations) |
Hollow Powershaft | Engage or disengage multiple engines to save fuel or provide power |
Hollow Powershaft | Reduces number of engine variants required; less parts inventory |
Simplified production | Reduce the number of engine variant production lines; faster production |
Less factory space required | Reduced factory overhead and building maintenance expenses |
Less personnel required | Reduced payroll and benefits expenses |
Reduced number of tools | Production line elimination also eliminates tools required |
Reduced number of parts | Reduced parts manufacturing, storage and inventory tracking expense |
Reduced number of suppliers | Simplified supply chain; less dependency on suppliers; reduced delays |
Smaller engine dimensions | More storage in same space; more engines shipped in same container |
Vehicles | Benefit |
---|---|
Lighter sub-assemblies | A significantly lighter engine allows for substantially lighter sub-assemblies |
Smaller braking components | Less mass due to reduced component weight allows for smaller brakes |
Reduced overall weight | Weight savings from engine & all sub-assemblies adds to fuel savings |
Reduced fuel consumption | Combined effect from engine operation, lighter engine and components |
Smaller, simpler transmissions | Low RPM, high torque engine permits 2 forward, 1 reverse gearing |
Lower center of gravity | Horizontally opposed engine, smaller dimensions, mid-engine applications |
Storage & passenger space | Reduced engine volume opens up space for people and cargo |
Trucking industry | Reduced overall weight permits heavier payloads |
Simpler to maintain | Sealed power case equate to elimination of oil changes; less waste |
*Data derived from static testing and/or mathematical calculations generally stating less than actual expected results
50% Complete
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.